
Safe Clone-Based Refactoring through Stereotype Identification and Iso-Generation

Nic Volanschi

Metaware Technologies

volanschi@metaware.fr

Abstract—Most advanced existing tools for clone-based
refactoring propose a limited number of pre-defined clone-
removal transformations that can be applied automatically,
typically under user control. This fixed set of refactorings
usually guarantee that semantics is preserved, but is inher-
ently limited to generally-applicable transformations (extract
method, pull-up method, etc.). This tool design rules out many
potential domain-specific or application-specific clone removals.
Such cases are ordinarily recognized by humans as stereotypes
derived from a higher-level concept and manually replaced with
an appropriate abstraction. Thus, in current tools, generality
is sacrificed for the safety of the transformation. This paper
proposes an alternative approach, in which the spectrum of
refactoring techniques is open, including manual interventions,
while keeping strong safety guarantees based on the notion of
iso-generation. Our method can operate on multiple languages
and has been prototyped on a subset of a real-world legacy asset
containing C and COBOL programs, with promising results.

Keywords-clones, refactoring, maintainability, safety

I. INTRODUCTION

Clone management technology [4] has largely achieved

by now a level of maturity that makes it an inescapable

assistant for refactoring large applications written in any pro-

gramming language. The benefits of clone-based refactoring

in terms of maintainability are widely accepted nowadays,

by their ability to achieve significant reductions in code

size, to avoid inconsistent changes of clone instances, but

also to identify reusable programming abstractions in the

source code, such as parameterized procedures or cross-

cutting concerns.

Successive generations of clone-based refactoring tools

gradually improved their effectiveness. Historically, most

research has been performed on clone detection technologies

and resulted in many effective and scalable tools, able to

find many different kinds of clones: textual, token-based,

syntactic, or semantic clones, identical or similar clones,

etc., covering typically between 5% and 23% of an asset [4].

Scalability has definitely been proven by analyzing several

assets at once to detect inter-project code reuse [7], or by

comparing many different versions of a same system such

as Linux [6].

However, blindly removing all the clones detected in a

program can effectively reduce its size, but is not the right

solution to improve maintenance, because (1) many clones

do not correspond to any useful abstraction, and (2) it

has been shown that some clones come from valid design

patterns, and their removal could actually deteriorate the

maintainability [3]. Clearly, only a fraction of the detected

clones are good candidates for removal to increase the

maintainability.

To help the programmer in this difficult selection, some

tools further classify the clones according to different tax-

onomies, and sometimes even suggest several clone removal

techniques that are applicable to each clone. Based on this

higher-level information, the user can choose the appropriate

refactoring technique and apply it manually [11], [12].

As the transformations may be quite complex, involving

checking pre-conditions, renaming variables, moving and

adapting the clone instances, these manual operations can

be tedious and error-prone.

To address this last aspect, some more recent clone

management tools, pluggable into an integrated development

environment (IDE), may also perform some clone removals

automatically under user interactive control. This sometimes

guarantees that all the pre-conditions are met and that the

transformation preserves the semantics of the program. Un-

fortunately, this tool design unavoidably limits the number

of clone-removal transformations to a fixed set of generally-

applicable techniques. For instance, if the subject language

is object-oriented, transformations such as: extract method,

pull-up method, and so on, are proposed [9], [10].

This highly-automated tool design has two main limita-

tions. First, the clones identified by even the most advanced

techniques may not delimit exactly the most useful under-

lying “concept realizations” [2]. Sometimes, close manual

inspection may conclude that the identified clones have to

be slightly restricted or extended, or that several neighboring

clones have to be fused together so that they represent a

useful and easy to understand operation, replaceable with a

programming abstraction such as a new procedure. Secondly,

the transformation needed to replace the clones with a

programming abstraction may not be a generic technique

but an application-specific one. For instance, some textual

variations or repetitions can only be captured by custom code

generators that cannot currently be synthesized automati-

cally. Sometimes, the replacement involves recognizing and

unifying some unjustified differences between the instances

that come from incoherent evolutions.

Summarizing the above discussion, users have to choose

today between manually transforming the programs based

on clone information, with the risk of introducing errors, or

using highly-automated tools to safely perform some fixed

set of generic refactorings, usually operating exactly on the

automatically-detected clones.

This paper presents an alternative method for clone-based

refactoring, aimed at improving the maintainability of an

asset, which is open-ended in that it integrates manual clone

interpretation and manual transformations while keeping the

risk of introducing errors very low.

In the first phase of our method, starting from the results

of a clone detector, the user localizes stereotypes in the

source code, that are usually indicated by clones or groups

of clones, and selects those that correspond to useful abstrac-

tions, which can be generic, platform-specific, application-

specific, domain-specific, etc. In a second phase, the user

re-implements the selected stereotypes as code generators,

using support already integrated in the development environ-

ment (e.g., macros in C), or added as a simple pre-processor.

Then, an iso-generation test is performed, which consists in

verifying that the code generated from the refactored source

is identical to the original code. For more generality, a list of

differences can be produced by comparing the original and

regenerated versions; the user then validates this list (this

operation can be semi-automated or fully automated).

The refactored code can be the final outcome of the

method if it is acceptable to maintain a source code that

contains code generators. Whenever using code generators

is not an option, for any reason including local programming

standards, incompatibility with the existing programming

environment, etc., a final phase of our method consists in au-

tomatically replacing the code generators whenever possible

with standard language abstractions such as procedures, and

expanding the rest of the generators back in the source. Even

for these last cases, an added value exists for the maintainer

because the re-expanded code is delimited by comments in

the code indicating the call to the corresponding generator,

including its arguments if applicable. Thus, the meaningful

clones are either removed from the code or thoroughly

documented as higher-level abstractions.

We applied this method on a subset of a real asset of one

of our customers, containing both C and COBOL programs,

with encouraging results:

• the final code size reduction obtained, even in absence

of code generation, is significant, of 24% on average

on our sample, and up to a maximum of 40%

• we report several kinds of useful stereotypes, not de-

tected per se as clones, whose refactoring can improve

maintainability

• a high fraction of the code generators can be replaced

with standard programming language abstractions, even

in languages where abstractions are scarce and pretty

low level such as in COBOL.

The context of the real project on which the method

was prototyped is described in Section II. The quest for

stereotypes is described in Section III. The refactoring using

code generators is presented in Section IV on C programs,

and in Section V on COBOL programs. The reduction

of code generators to standard language mechanisms is

described in Section VI. The final results of the refactoring

method on a sample are given in Section VII. Related work

is discussed in Section VIII, and Section IX concludes.

II. PROJECT CONTEXT

Metaware Technologies is a company specialized in mod-

ernization services for legacy assets, such as: migrations

from a platform to another; software quality assessment,

monitoring, and improvement; mass re-engineering projects

such as extending a social security number with additional

digits in a complete, multi-language asset; etc. Our company

offers these services to customers in banking, finance, insur-

ance, and retail, among others. A general characteristic of

these customers is that they critically rely on their software

asset, and therefore usually impose very tight availability

constraints on their IT system.

The present refactoring method was developed in response

to the need of one of our customers, whose name is kept

undisclosed for confidentiality reasons, a leader in some

specialized financial services. Our customer possesses an in-

house developed software asset whose core part runs on an

IBM z/OS mainframe, and must handle a high number of

transactions (thousands per second) under peak load periods

lasting only a few minutes, and occurring a few times per

day. These transactions represent computations involving

important sums of money. Therefore, a breakdown of the

IT system during these peak loads can result in losses of

the order of a million euros. Currently, the system performs

satisfactorily, but its evolution is becoming too expensive

and too slow with respect to the changing demands of the

business domain. In short, the agility of the system was

identified by the customer as being clearly insufficient, and

they expressed the need for a significant improvement along

this axis. We believed that clone-based refactoring could be

an effective solution by reducing the code size and increasing

the level of abstraction.

The mainframe asset consists in about 4 MLOC (millions

of lines of code), among which 3.5 MLOC of COBOL and

0.5 MLOC of C. The asset is divided in 14 subsystems.

The analysis effort was concentrated on one subsystem

called KER, designated as critical by its central role in

the business domain. The KER subsystem consists of 480

COBOL programs and 148 C programs. As a preliminary

step, we analyzed KER using a simple in-house clone

detector, part of our REFINETM suite. This tool reports

textually identical pieces of source code consisting of a

minimum of 6 consecutive lines. The results indicated that

40% of the COBOL code and 10% of the C code were part

of at least one clone instance. The unusually high degree of

exact duplication on the COBOL part can be partly attributed

to the characteristics of the language (verbosity and lack of

abstraction mechanisms).

The results of our clone detector reporting only textually

identical clones were complemented using CCFinderX [8],

an open-source clone detector also reporting parametric

near-miss clones. The default options were used for this tool.

III. STEREOTYPES

Starting from the exact and parametric clones detected by

the tools, the first step of our method consists in finding

stereotypes which can be usefully factored out as code

generators. We analyzed a sample of the detected clones in

order to infer from purely syntactic regularities the eventual

underlying concepts. We introduce here some of the classes

of stereotypes we found frequently in the code. Examples

of each class will be given in the following sections.

Internal stereotypes: Internal stereotypes are repeated

regular code sequences whose instances occur all in the same

source file. They mostly correspond to local operations that

cannot be easily generalized to cover other source files. We

found many internal stereotypes both in C and COBOL

programs, repeated somewhere between 2 and 20 times,

either identically or with some slight variations.

Overlapped clones: We observed that a significant

number of the detected clones in both C and COBOL

programs were overlapped, and we saw on a few examples

that the corresponding code sequences were remarkably

repetitive. In fact, it is easy to see that in general, two

overlapped exact clones hide a more regular structure. For

instance, if the overlapped region is exactly the half of

one instance, the code consists of three repetitions of a

smaller clone, because the shared part a must appear at the

beginning of the first instance (because it begins the second

instance), and also at the end of the second instance (because

it ends the first instance). The other cases also present

sub-clones. Therefore, we inspected overlapped clones with

special priority.

Host variables: As many COBOL programs are using

embedded SQL queries, they contain host variables corre-

sponding to tables in the database. Some host variables were

written by hand, while some others were initially generated

with a standard include file generator called DCLGEN, and

then textually incorporated in the programs for eventual

customization. In fact, very few of these copies have really

been customized, so they mostly show up as clones.

Stereotyped SQL INSERT queries: Once declared, the

host variables are used in various SQL queries. Among

them, they are numerous SQL INSERT queries that are very

regular: they consist in inserting the values of all the columns

in a database table row, starting from the fields of the same

names in the host variable. Given that many tables have

dozens of rows, these long queries would better be generated

starting from the database schema description. In fact, this

is one possible generalization of the DCLGEN generator.

Indeed, DCLGEN automates only the declaration of the host

variable, but not its stereotyped uses.

Stereotyped SQL cursors declarations: One program,

for instance, contained as much as 18 cursor declarations of

about 50 lines each, that corresponded to different lookups

in the same table. The table contains two keys; the different

cursors look up the records matching, not matching, or

ignoring each of the two keys (which gives 9 different

combinations), and some cursors retrieve a few extra fields,

and slightly reorder the fields (which doubles the previous

9 combinations). It is clear that factoring out this kind of

stereotypes can bring important savings at maintenance time,

and also during development.

Stereotyped procedure invocations: In COBOL, user

procedures internal to a program are implemented as se-

quences of statements labeled by a paragraph name. In prac-

tice, paragraphs are not only used for local procedures, but

also as small shared procedures used by many programs. For

this purpose, paragraphs are sometimes declared in a shared

include file (known as a “copycode”). Paragraphs cannot

handle arguments, so the copying of parameters from/to the

caller is handled by MOVE statements before and after the

call. This tends to create stereotyped sequences for invoking

paragraphs in a program, or even across programs. We

found, for instance, a dozen of shared paragraphs called

about 1600 times in the KER subsystem, implementing some

marshaling of different data types such as date, binary, and

string. The corresponding invocation sequences and checks

of the result have very frequently the same form or a few

similar forms, and therefore constitute useful stereotypes.

Duplicated paragraphs: Some paragraph names appear

in many different programs, and frequently contain the same

or similar code. These paragraphs usually correspond to

technical stereotypes such as standard error handling, ini-

tialization of system services, exit protocols from a program

or transaction, etc. For instance, a paragraph called START-

SQL-ERR appears in 79 programs of KER, most of the time

with the same contents, that corresponds to a default error

handling.

Structural clones: By listing the most frequent para-

graph names, we found a group of 68 programs all con-

taining the same 9 paragraphs at the end, always with the

same content. A closer inspection of some programs in this

group revealed that they really constitute a program family,

sharing a same skeleton. Part of this common skeleton comes

from the platform: all these programs are using the CICS

transaction server, so they have to declare some technical

variables and implement some paragraphs for handling some

events. Other parts of the skeleton come from programming

standards of our customer and from the various cloning

patterns [3] apparently used during development.

After the stereotypes have been identified, the next phase

of our method consists in re-implementing them as code

generators.

IV. REFACTORING USING CODE GENERATORS IN C

The C language offers the possibility to write quite

powerful code generators using its pre-processing features,

including textual file inclusion, macros with arguments,

and conditionals. The pre-processor, called “cpp”, can be

invoked alone to interpret these directives; as a result, calling

cpp has the effect of executing all the code generators. The

main limitation of the C pre-processor directives is that

conditional compilation cannot be used within macros. In

other terms, C macros cannot contain logic. This prevents

implementing variant parametric stereotypes, i.e. parametric

stereotypes for which certain instances contain some state-

ments that are absent from (or different in) other instances.

Nevertheless many kinds of stereotypes can be easily imple-

mented in C.

In particular, internal stereotypes can be expressed as local

macros, provided they are not simultaneously parametric and

variant. We found many cases in the KER subsystem where a

parametric stereotype occurs in several branches of a same

switch statement. These clones, which may include more

than 10 lines each, and are replicated up to 17 times in a file,

do not always constitute an abstraction simple to define, and

usually access many variables in scope. For these reasons,

these clones have not been factored out as C local functions.

However, all these clones must be maintained together, so

factoring them as a local macro seems to be a good solution.

Indeed, local macros do not incur any overhead, as they

have no run-time cost, nor a “cognitive” cost at maintenance:

they can simply be defined in place, and used as documented

clones interpreted by the pre-processor. As such, they can

be used even for factoring a few instances of a few lines

each. In contrast, external stereotypes implemented in shared

include files should be chosen more carefully, because there

is a cognitive cost in this case, as the maintainer has to know

about their existence, location, meaning, and usage.

Iso-generation test: Once the code generators are writ-

ten and the stereotypes are manually replaced by invocations

of the generators, the verification step consists in executing

the cpp pre-processor, once on the original code and once

on the refactored code. The results are compared using a

standard text comparison tool to produce a list of differences.

Because of the fact that C macros always fit on a single line,

differences in white space have to be filtered out by a simple

complementary script. If there are no other differences,

the transformed code is equivalent to the original code.

In the more general case, the list may contain differences

that can be checked manually or automatically, and which

may concern: equivalent statements or even equivalent small

sequences of statements; for instance, a pair of independent

statements coming in opposite orders in different clones is

an easily justifiable difference. These differences may of

course come from certain liberties taken by the developer

of the code generator to unify not only strict clones, but

also stereotype instances that are syntactically distinct but

semantically equivalent.

V. REFACTORING USING CODE GENERATORS IN COBOL

The COBOL language also includes a simple facility that

can be used for code generation: the COPY statement, which

includes an external file, optionally performing some textual

substitutions. The COPY facility can be used to implement

simple code generators such as exact or parametric clones.

However, this mechanism has some severe limitations:

• a file included by COPY REPLACING cannot include

another file; therefore, code generators cannot call each

other, which prevents building complex generators out

of simpler ones

• there is no notion of local macro like in C; this pre-

vents using code generators for documenting internal

stereotypes

• there is no conditional compilation facility; this pre-

vents implementing variant stereotypes.

A. Adding macros to COBOL

Fortunately, it is quite easy to add powerful code gen-

eration facilities to COBOL. At first sight, it might seem

possible to use cpp as a COBOL pre-processor, when avail-

able, but that turns out quickly to be a bad idea. Indeed, cpp

is designed to work well with the lexical conventions of C,

and maybe other similar languages. For instance, paragraph

labels in COBOL must be placed near the beginning of a

new line; as a C macro must hold on a single line, this means

that a macro cannot contain a paragraph and its ending label.

Rather, we developed in Perl a simple open-source pre-

processor called “metapp”1, similar in spirit with cpp, but

with a more suitable syntax and less composition constraints,

providing:

• local and external macros with parameters, invoked by a

“#copy macro(...)” directive; the parameters are defined

in the macro using the #bind directive

• conditional text inclusion using a #if directive; the

conditional expressions are full Perl expressions, and

are forwarded to the Perl interpreter using the “eval”

function.

• invocation of any Perl statement, also passed to “eval”;

this is useful for setting variables and for calling

complex code generators fully implemented in Perl.

With respect to C macros, metapp unifies the invoca-

tion syntax of local and external macros, allows nesting

conditional text inclusion within macros, provides default

values for macro parameters, and is extensible with external

code generators. It is important to notice that as opposed to

C, COBOL compilers do not always offer the possibility

to separately perform the pre-processing pass, so as to

only expand COPY statements. Therefore, metapp not only

1metapp can be downloaded at http://www.metaware.fr/metapp/

enhances the code generation possibilities, but also allows

to test the iso-generation according to our method.

Stereotyped SQL INSERT statements: Using this code

generation support, it took us less that one man-day to

implement the stereotype for SQL INSERT statements,

generalizing the DCLGEN code generator: The code gen-

eration is performed by a macro written in Perl that takes

the name of the database table as an argument, scans the

corresponding description in the database schema, extracts

the names and types of all its columns, and then generates a

complete SQL INSERT statement compatible with the host

variable generated by DCLGEN.

In some programs of KER, we found a number of INSERT

statements that almost had this regular form, with a few dif-

ferences: some columns in the table did not took their value

from the corresponding host variable field, but rather from

SQL expressions such as “CURRENT TIMESTAMP”). To

cope with these cases, our code generator accepts optional

arguments to provide such exceptional values for certain

fields, or to omit updating a given field:

insert_into(MVCREST,

"TSMAJ=CURRENT_TIMESTAMP", "USMAJ=")

This call omits updating column USMAJ, and sets column

TSMAJ to the current time; all the other fields are updated

from the corresponding field in the host variable. The macro

generates 32 lines of code in this example. Besides the fact

that it saves time during development and maintenance, the

code generator also ensures some degree of coherence with

the database when the schema evolves.

Stereotyped procedure invocations: Stereotyped invo-

cations of either paragraphs or sub-programs can be easily

implemented using metapp macros. Here is a typical, simple

example of variant parametric stereotype, capturing calls to

paragraph START-CODIF-BIN1, pervasively used through-

out the asset.

#bind $val, $j

MOVE 1 TO W-ZFREE02.

MOVE $val TO W-BIN1O.

PERFORM START-CODIF-BIN1

THRU END-CODIF-BIN1.

MOVE W-BIN1I TO

W-TFREE01(W-ZFREE01:W-ZFREE02).

ADD W-ZFREE02 TO W-ZFREE01.

#if defined($j)

MOVE $j TO W-ZFREE02.

MOVE $val TO W-INDIC-NUM$j.

MOVE W-INDIC-NUM$j TO

W-RECEP-RESULT(W-ZFREE04:W-ZFREE02).

ADD W-ZFREE02 TO W-ZFREE04.

#fi

Duplicated paragraphs: The stereotyped paragraphs

involving SQL error handling, for instance, can also be

easily implemented as macros even when there are slight

variations between the instances, expressed as #if sections.

Structural clones: A closer analysis of the program

family composed of 68 programs sharing a common skeleton

showed that even more sharing can be achieved by consid-

ering several specialized sub-versions of the skeleton. Using

macros that call each other, it is possible to refine a common

abstraction into more specialized ones, by putting the generic

abstraction in a shared macro that is either called by the

more specialized macros, or invokes the more specialized

macros as callbacks. Thus, we put the 9 shared paragraphs

and other pervasive declarations in the common skeleton (a

set of generic macros), and we created a more specialized

skeleton for one of the programs. The result was a code

size reduction of 33% on this program, but we feel that

we only scratched the surface of the potential refactoring

opportunities exhibited by this program family.

VI. REDUCING THE CODE GENERATORS

After the stereotypes have been factored out as code gen-

erators and tested for iso-generation, the next, optional, step

is to reduce them to native or simpler language mechanisms.

In the case of C programs, the motivation for replacing

macros by function calls, whenever possible, (and perhaps

declared “inline”) is that for functions the compiler checks

the type of each argument, whereas for macros only the

number of arguments is checked.

In the case of COBOL programs, the motivation for

reducing metapp macros to standard mechanisms is more

related to the impact of adopting an extra pre-processor

within the build chain of the company. In our experience,

many companies using COBOL are already using different

kinds of pre-processors, either off-the-shelf such as em-

bedded SQL pre-processors, or in-house developed. These

companies may be more open to adopt a new pre-processor.

For companies where the reduction step is a requirement,

it is important to know what impact this step may have on

the size of the refactored source code. The impact is that

only some of the metapp macros can be reduced to standard

mechanisms, for example:

• macros without conditionals and not invoking other

macros can be reduced to COPY REPLACING files

or to paragraphs

• macros containing conditionals can always be trans-

formed into several macro versions without condition-

als, and then reduced as above; whenever the number

of versions is low (typically 2), this may be perfectly

acceptable.

Some other macros cannot be reduced to standard mecha-

nisms, or their reduction would not bring the same improve-

ment in maintainability.

For all these non reduced macros, metapp expands the

stereotypes in the code, but introducing stylized comment

delimiters to indicate that the code section was automatically

Program Original size Gain with Gain without
(LOC) generators (%) generators (%)

PRG041.cbl 2973 46% 40%

PRG431.cbl 2347 11% 10%

PRG101.cbl 2180 45% 42%

PRG104.cbl 2331 30% 29%

PRGPD4.cbl 701 18% 14%

PRG015.cbl 6050 24% 22%

PRG001.cbl 6470 13% 13%

PRG028.c 725 44% -

PRG114.c 661 35% -

PRG460.c 2865 8% -

Table I
RESULTS OF REFACTORING ON A SAMPLE

generated. These markers are clearly an added value for

the maintainer, because (1) the coherent maintenance of all

instances is now greatly simplified, and (2) when the stereo-

type represents a technical artifact, it probably means that

the maintainer can skip these sections altogether, unless there

is a change in the platform. In particular, some irreducible

instances can be expanded as separate include files, like the

host variables generated by DCLGEN, to completely shift

them out of focus; such “external code generators” can be

kept and re-run de-coupled from the regular build.

The reductions from macros to standard mechanisms have

not yet been automated in our tools, but these are well

understood program transformations, left as future work.

VII. EXPERIMENTAL RESULTS

Because of time constraints imposed by our customers’

budget for this study, we really performed the refactoring on

a sample of only 10 programs from this list: 7 in COBOL

and 3 in C. The sample is detailed in Table I along with the

code size reductions obtained by factoring the stereotypes.

For instance, the first program was reduced from 2973 lines

to 1609 lines using macros and to 1813 lines without macros,

which represents reductions of 46% and 40%.

The average code size reduction on COBOL programs

is of 26% using macros, and this percentage is reduced

to 24% when macros are reduced to standard COBOL

mechanisms. The relative difference is thus very small on

this sample. Even though this result is clearly insufficient to

draw general conclusions, we find it particularly encouraging

for the applicability of our method in companies that require

the reduction step. The average code size reduction on C

programs is of 29%. For C programs, we did not apply

the reduction step, because replacing macros with functions

should have no noticeable impact on code size.

Several factors contributed to the success of these impor-

tant code reductions: the high fraction of cloned code in the

initial programs, the selection of a sample covering various

refactoring opportunities, the radical refactoring enabled by

the safety of iso-generation, and perhaps the presence of

many latent abstractions in the target business domain.

VIII. RELATED WORK

DeBaud [2] describes a refactoring method applied on an

existing asset consisting of COBOL and BASIC programs,

aimed at replacing some domain-specific code sections in

the source code with calls to a domain library such as a

report writing library. In their method, one first builds a

dictionary of domain concepts, then declined as a set of code

patterns; these patterns are then matched with the source

code to detect the “concept realizations”. While there are

some striking similarities with our method, their process is

not clone-based, but concept-directed. As a result, as they

admit, the method cannot be performed without a domain

expert. In contrast, in our method the clone detection phase

obviates the need for domain expertise as concepts are

inferred bottom-up from the code, rather than matched top-

down starting from a domain dictionary.

Baxter et al. [1] present a clone detector that not only

reports exact and near-miss clones, but also produces C

macros that generates all the instances. They further suggest

that such clones can indicate a higher-level concept that is

being realized through a programming idiom. Our method

can be seen as an elaboration of this research track, in

which we detail the analysis phase going from clones to

stereotypes, and the way back using code generators. As

stereotypes do not directly correspond to clones, the macros

cannot be generated automatically like in their work. We

further explore the application of this approach on languages

not providing powerful macro features such as COBOL,

and add the optional step of reducing the macros to native

language mechanisms.

Kapser and Godfrey [3] enumerate the development prac-

tices involving cloning, and document a complete design

pattern for each, showing that each of these patterns can

be valid in some situations and unjustified in others. Their

main point is that the decision to remove a clone has to be

carefully weighted in order to improve maintenance. In their

approach, raw clone information is automatically refined to

find higher-level grouped clones, covering most part of a

program block. Clearly, the insights on the original driving

forces for cloning can be most important during our analysis

phase when concluding whether a stereotype is “useful”.

However, the fact that we envision refactoring using code

generation mechanisms sometimes radically changes the

tradeoffs considered when deciding whether a stereotype

is useful or not, and extends the scope of stereotypes.

For instance, if only standard mechanisms are used, the

stereotyped declaration of 18 SQL cursors would clearly

create a too complex API; when using a code generator, the

abstraction is very easy to build, understand, and use. We

also diverge on the treatment of overlapped clones, which

they mostly drop.

Jarzabek and Li [13] analyze the numerous clones found

in the Java Buffer library of JDK 1.5, and show that most

of this code duplication can be removed by adding a code

generator on top of Java, expressed in XVCL, able to re-

generate the library in its original form. They obtain thus an

impressive reduction in code size of 68%. Their approach

is conceptually the same as ours until the iso-generation

step, but an important detail differ: the XVCL language

is really a meta-language embedding Java, while we do

the opposite, embedding macros within the host language

COBOL (or using the macros already embedded in C). This

detail is very important for adoption in conservative milieus,

and clearly smooths the learning curve. Besides, we show

how the code generators can be reduced to fully standard

programs in most cases, and assess this ratio on some

concrete examples. Nevertheless, a system such as XVCL

allowing inheritance between templates may be interesting

when refactoring structural clones.

Cordy [5] teaches some very interesting lessons about the

adoption (and resistance to adoption) of refactoring tools

in the maintenance process within the industry practice, and

especially in the finance domain. He points out many reasons

for which brilliant solutions may fail to convince in that

context, and insists, among others, on the importance of

testing in such dependable systems. By radically decreasing

the need to test the refactored code, iso-generation can be

an effective argument for adoption in that context.

IX. CONCLUSIONS

We presented a refactoring method exploiting the infor-

mation computed by clone detectors. Instead of applying

this raw information by direct clone removals, higher-level

regularities are manually searched in the code, and re-

implemented as code generators; optionally, the code gener-

ators can be automatically reduced to standard mechanisms

of the subject language. The potential risk introduced by the

manual transformation is eliminated by an iso-generation

step in which some differences may be tolerated. It is

important to notice that the degree of confidence in the final

result tends to decrease gracefully with the number of such

differences as opposed to a scenario in which such a large

restructuring is done with only testing as the safety net. The

results on a real case tend to show that the reduction step

does not seem to penalize significantly the gain ultimately

achieved. The method was illustrated on C and COBOL

programs, but it should be applicable to other programming

languages as well, provided that code generation features

are available in the language or added by an external pre-

processor.

Future work will investigate semi-automating some man-

ual steps of the method, such as the stereotypes identifica-

tion. Also, once a stereotype is implemented as a macro, it

would be interesting to find new instances by deriving from

it a specialized matcher, perhaps more tolerant to specific

variations than a standard clone detector. We also feel that

there is important potential for improvement in the area
of structural clone removal using a hierarchy of program

skeletons.

REFERENCES

[1] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.
1998. Clone Detection Using Abstract Syntax Trees. In Proc.
Intl. Conf. on Softw. Maint. (ICSM ’98). IEEE Computer Soc.

[2] J.-M. DeBaud. 1997. DARE: Domain-Augmented ReEngineer-
ing. In Proc. Working Conf. on Reverse Eng. (WCRE ’97).
IEEE Computer Soc.

[3] C. Kapser and M. Godfrey. 2006. ‘Cloning Considered Harm-
ful’ Considered Harmful. In Proc. Working Conf. on Reverse
Eng. (WCRE ’06). IEEE Computer Soc.

[4] R. Koschke. 2008. Frontiers on software clone management.
In Proc. Intl. Conf. on Softw. Maintenance (ICSM ’08). IEEE
Computer Soc.

[5] J. Cordy. 2003. Comprehending Reality: Practical Barriers
to Industrial Adoption of Software Maintenance Automation.
In Proc. Intl. Work. on Program Comprehension (IWPC ’03).
IEEE Computer Soc.

[6] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue. 2007.
Analysis of the Linux Kernel Evolution Using Code Clone
Coverage. In Proc. Intl. Work. on Mining Softw. Repositories
(MSR ’07). IEEE Computer Soc.

[7] S. Livieri, Y. Higo, M. Matushita, and K. Inoue. 2007. Very-
Large Scale Code Clone Analysis and Visualization of Open
Source Programs Using Distributed CCFinder: D-CCFinder. In
Proc. Intl. Conf. on Softw. Eng. (ICSE ’07). IEEE Computer
Soc.

[8] T. Kamiya, S. Kusumoto, and K. Inoue. 2002. CCFinder: a
multilinguistic token-based code clone detection system for
large scale source code. IEEE Trans. Softw. Eng. 28:7.

[9] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. 2004.
ARIES: Refactoring Support Environment Based on Code
Clone Analysis. In Proc. IASTED Intl. Conf. on Softw. Eng.
and Applications.

[10] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and
K. Kontogiannis. 2000. Advanced Clone-Analysis to Support
Object-Oriented System Refactoring. In Proc. Working Conf.
on Reverse Eng. (WCRE’00). IEEE Computer Soc.

[11] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and K.
Kontogiannis. 1999. Measuring Clone Based Reengineering
Opportunities. In Proc. Intl. Symp. on Softw. Metrics (MET-
RICS ’99). IEEE Computer Soc.

[12] S. Schulze, M. Kuhlemann, and M. Rosenmüller. 2008. To-
wards a refactoring guideline using code clone classification.
In Proc. Work. on Refactoring Tools (WRT ’08). ACM.

[13] S. Jarzabek and S. Li. 2006. Unifying clones with a generative
programming technique: a case study: Practice Articles. J.
Softw. Maint. Evol. 18:4.

